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Machine
Learning

Autonomous driving
Medical diagnosis

Playing games



However

Collision Attack

accel: 0.758 accel: 0.873
brake: 0.056 brake: 0.030
steer: 0.008 steer: 0.004



Are we doomed?
(Is ML inherently not reliable?)

NO! But we need to re-think how we do ML

(adversarial aspects = stress-testing our solutions)



Adversarial Example

D¢rqin- training data
x;: training sample

o _ y;. class label
Model training: S z L(fe(xi), ¥:)  L: loss function
(X, ¥i) € D¢rain ng model

Adversarial attack: Max L(fo(x"),y) st.llx" —xll, < € forx € Dye
‘__l_’ \ Y ) —
Increase error small change test time attack

\ 4

8
I — <e=——=~0.031
|| x X|loo <€ SEC

» Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014):
x'=x+¢e-signlV, L(fa(x),y) x': adv examples

 Projected Gradient Descent (PGD) is a iterative version of FGSM
(Madry et al., 2018)

26+ = 1, (x'® + o - sign U L(fo (x'®), )



How to obtain adversarially robust models?



Adversarial Training

Adversarial training is a min-max optimization process:

attacking
n f A 1
1
min— ) max _L(fo(xi), 1)
e [lxi—xif| , <€

L: loss, fy: model, x;: clean example, y;: class,
x;: adversarial example.

1. Inner Maximization:
— This is to generate adversarial examples, by maximizing the loss L.

- Itis a constrained optimization problem: [|x; — x;ll, < e.
2. Outer Minimization:

— Atypical process to train a model, but on adversarial examples x;
generated by the inner maximization.
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Convergence Score of the Maximization

Question: How well the inner maximization is solved?

Definition ( First-Order Stationary Condition (FOSC))

Given a data sample x° € X, let x* be an intermediate example found at
the k™ step of the inner maximization. The First-Order Stationary
Condition of x* is
k) — _ .k k
c(xk) = max (x — x*,7.£(0,x5)),

where x = {x|||x — x°||» < €} is the input domain of the e-ball around
normal example x°, (8, x*) = £(hg(x*),y), and (-} is the inner product.

FOSC:
- A smaller value of ¢(x*) indicates a better solution of the inner

maximization, or equivalently, better convergence quality of the
adversarial example x*.

* To help Danskin’s Theorem hold.

Yisen Wang*, Xingjun Ma*, et al., On the Convergence and Robustness of Adversarial Training. ICML 2019.



Convergence Theorem

Under certain assumptions, let A= L¢(0°) — mein Ls(8). If the step size of the

outer minimization is set to n, = min <% = > . Then the output of Adversarial

Lo2T

LA 515,68
zIE[IIVLs(Ht)IIZ]<40/ e

where L = (@ + ng) :

Training satisfies

* Inner maximization: FOSC < §, adversarial training can converge to a first-

order stationary point up to a precision of 5Lgxd
u

» If § is sufficiently small such that Z"6 small enough, adversarial training can
find a robust model 7.
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(c) FOSC vs. Step size

(d) FOSC vs. Step number

FOSC is a good and reliable
indicator of the final robustness
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Adversarial Training with different settings
for PGD-based inner maximization.

 PGD step size: PGD-E/ PGD-E produces the best

robustness, their FOSC values are also
concentrated around 0.

PGD step number: similar robustness, with PGD-
20/30 are slightly better, reflected by the
distribution of FOSC.

 Loss distributions are similar for different
robustness.
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FOSC View of Adversarial Training

40 R PGD:
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« Standard adversarial training overfits to strong PGD adversarial
examples at the early stage.

« Simply use weak attack FGSM at the early stage can improve
robustness.

* Improvement in robustness is also reflected in FOSC distribution.

The principle behind warm-up techniques



Warm-up is a method to solve max better,
Is there other options?



Rethinking the Robust Generalization Gap

Adversarial training is a min-max optimization process:

n
1
min = max  L(fp(e),y)
O Ni|xj—xif| <e
i=1 p
can be rewritten as

n

m“i,np(w), where p(w)zlz max £ fw(X}), i),

n Ix; —xi|lp<e

1=1
Standard training Adversarial training
K______K_J * Standard  *
0.8-/ gap 0.8 1
S S Robust gap
o o
© ©
3 0.41 3 0.41
< <
02 —— Training accuracy 0.2 —— Training robustness
Test accuracy Test robustness
O 25 S0 75 100 15 1% 175 200 o0

0 25 50 75 100 125 150 175 200

Epoch Epoch

Dongxian Wu, Shu-Tao Xia, Yisen Wang*, Adversarial Weight Perturbation Helps Robust Generalization. NeurlPS 2020.
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View from weight loss landscape

* Inspiring from standard Training:
- flatter weight loss landscape, smaller standard generalization gap

(b) with skip connections

(a) without skip connections

Is this conclusion still existing in adversarial training?

Hao Li et al. Visualizing the Loss Landscape of Neural Nets. NeurlPS 2018.
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Adapted Visualization Method

* Inspiring from standard Training:
« flatter weight loss landscape, smaller standard generalization gap

* |s this conclusion still existing in adversarial training?

Fai/
ks
/Visualization method in Hao Li et al. NeurlPS2018 OlfO O N
Standard training —> Adversarial trainingb’/fb@ o
ey
g(a@) = L(fw+aa(x:), ¥i) gla) = L(fw+ad(xl{)'.Vi) i Us/bn
x; is from pre-generated

\_ adversarial examples!!2] )

The correct way:

g(a) = p(w+ad) = % e(fw+ad(x;)ayi)a
i—1

Generating adversarial examples on-the-fly

[1] Understanding adversarial robustness through loss landscape geometries, arxiv 2019.
[2] Interpreting adversarial robustness: A view from decision surface in input space, arxiv 2018



Weight loss landscape

In the learning process of adversarial training

5 1.0
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a Accuracy (%)

Weight loss landscape has a strong correlation with robust
generalization gap
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Weight loss landscape has a strong correlation with robust
generalization gap



Theoretical view

* Informally from PAC-Bayesian bound

Bl 0] < o) + (Bl )] p(w)} + 41/ LKL 4w P) £ 2

flatness of weight loss landscape

 Explicitly flattening the weight loss landscape via replacing expectation
by maximization

1 1 /
min ’_‘Z”’ L(fo(x),y) m;n”v RIGIHCHBD

« Two max makes the maximization (min-max) solve better

« How to intuitively understand these two perturbations?
* Input perturbation is local worst for each example
» Weight perturbation is global worst for multiple examples



Implementation

AWP-based Adversarial training (AT-AWP)

n
1
min - max L X, Vi
o ||v||p<y||9||pnz ], < (fo+v(xi), i)

* An empirical implementation:
1. craft adversarial examples x;;
2. calculate AWP based on x; using one extra forward and
backward propagation;
3. update the parameter using the gradient based on x; and AWP.

* Only ¥8% time overhead in our implementation of AT-AWP.

* AWP is easily extended to other methods, such as TRADES, MART
and RST.
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Real robustness improvement

 AWP indeed flattens weight loss landscape, and reduces
the robust generalization gap.

0 Test robustness
4 1x1073 1001  mmm Robust gen. gap

80
e
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Accuracy (%)
2

(c) Weight loss landscape  (d) Generalization gap

* AWP really improves both the last and best robustness
during training.

0 30

$ — + Cutout
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— AT-AWP
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Epoch



AWP vs. Random WP

 AWP easily finds the worst-case perturbation, while RWP needs
a relatively large perturbation;

 AWP obtain a flatter weight loss landscape using smaller
perturbations;
 AWP balances the training robustness and robust gap well.

2.5 5
0
—0 L 1x 10 — AT AT-AWP
— 3x10" AWP
200 —6x10"! T (5x1073) 4 —100{ = AT-RWP
>
3_ ~ L:-:;--——.— ------ —————
Bn1s a L>; 80 “\\
3 S o \
21 = .
1.0 g 60 \\
< \
1 X — 1
0.5 40 M
0 e L I 90 =65 00 o5 1.0 104 103 102 10' 10°
Epoch a v

(a) Loss curve (b) Weight loss landscapes (c) Robustness



Universal robustness improvement

Table 2: Test robustness (%) on CIFAR-10 using WideResNet under L., threat model. We omit the
standard deviations of 5 runs as they are very small (< 0.40%), which hardly effect the results.

Defense Natural FGSM PGD-20 PGD-100 CW, | SPSA | AA

AT 86.07 61.76 56.10 55.79 54.19 | 61.40 | 52.60*
AT-AWP 85.57 62.90 58.14 57.94 55.96 | 62.65 | 54.04
TRADES 84.65 61.32 56.33 56.07 5420 | 61.10 | 53.18
TRADES-AWP 85.36 63.49 59.27 59.12 57.07 | 63.85 | 56.17
MART 84.17 61.61 58.56 57.88 54.58 | 5890 | 51.10
MART-AWP 84.43 63.98 60.68 59.32 56.37 | 62.75 | 54.23
Pre-training 87.89 63.27 57.37 56.80 55.95 | 62.55 54.99
Pre-training-AWP  88.33 66.34 61.40 61.21 59.28 | 65.55 | 57.39
RST 89.69 67.94 62.60 62.22 60.47 | 67.60 | 59.65
RST-AWP 88.25 69.60 63.73 63.58 61.62 | 68.72 | 61.10

Table 3: Test robustness (%) on CIFAR-10 using WideResNet under L, threat model. In brackets,
+ indicates improvements over Pre-training.

Defense PGD-20 CWa AA

Pre-training 57.37 55.95 54.92
TRADES-AWP 59.27 (+1.90) 57.07 (+1.12) 56.17 (+1.25)
Pre-training-AWP  61.40 (+4.03) 59.28 (+3.33) 57.39 (+2.47)




Except max process, how about min process?
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Revisiting the Input Examples

Adversarial training is a min-max optimization process:

n

1
n_z max  L(fo(x{),¥:)

mel n el =i < €
i=1 "t “Hp~

L: loss, f,: model, x;: clean example, y;: class, x;: adversarial
example.

Adversarial examples are only defined on correctly classified examples

How about misclassified examples?

Yisen Wang*, Difan Zou*, et al., Improving Adversarial Robustness Requires Revisiting Misclassified Examples. ICLR 2020.



Misclassified vs. correctly classified examples

« A pre-trained network to select the same size (13%)

« Subset of misclassified examples S™
« Subset of correctly classified examples S*

-~~~ Perturb (PGD'?) s~ u s*
Not perturb S*
—— Not perturb S~

ok
o

Test Robustness (
N Y
()] w

w
o©
o

0 20 40 60 80 100
Training Epoch

Misclassified examples have a significant impact on the final
robustness
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« For inner maximization process:
 Weak attack on misclassified

examples S~
« Weak attack on correctly classified
examples S*
. 47.5
g\i 45.0 MR &
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2 325 —— FGSMon s~
30.0 0 20 40 60 80 100

Training Epoch
(b) Inner maximization

different maximization techniques
have negligible effect

Delving into the max and min processes

» For outer minimization process:

« Regularization on misclassified
examples S~
« Regularization on correctly classified

examples S*
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(c) Outer minimization

different minimization techniques
have significant effect



Misclassification aware adversarial risk

» Adversarial risk:

1 n
R(he) = - Zx{gﬁi&.) 1 (he(x}) # vi),
i—1 i

» Correctly classified and misclassified examples:

St ={i:ien],ho(x;) =y} and S, ={i:ie[n],ho(x;)# yi}

* Misclassification aware adversarial risk:

ming Rmisc(ho) : = %(Zz‘es;:e Rt (heo,x;) + Zz’es;o R~ (he, Xz))
= e {1(he(X]) # yi) + 1(he(x:) # he(X})) - 1(he(xi) # yi) }



Misclassification Aware adveRsarial Training
(MART)

Surrogate loss functions (existing methods and MART):

Defense Method Loss Function

Standard CE(p(x’,0),y)

ALP CE(p(X',0),y) + X - [[p(X’,8) — p(x,0)|3

CLP CE(p(x,0),y) + X - |p(X',0) — p(x,0)|l5
TRADES CE(p(x, 6),4) + A - KL(p(x,0)|[p(X, 0)

MART BCE(p(x', 0),y) + A - KL(p(x, 6)|[p(X; 6)) - (1 — py (%, 6))

BCE(p(x],0),y;) = —log (py, (X}, 0)) — log (1 — max py (%}, 6))

k#yi

(=]
o
(2]
(O]
S
[72]
-
Q —— BCE(x_adv) + KL-(1-p)
20 > 20 =
-— BCE(x_adv) + KL-(1-p) g BCE(x_adv) —» CE(x_adv)
8 10 BCE(x_adv) + KL g 10 —— BCE(x_adv) —» BCE(x_nat)
= —— BCE(x_adv) ~ —— Inner Max: CE - KL
0 0 20 f10_ 60 80 100 0 0 20 40 60 80 100
Training Epoch Training Epoch

(a) Removing (b) Replacing



Beyond training objective,
IS model architecture related to robustness?



Skip connection matters

* Neural network architectures:
« Skip connection, activation, batch normalization, ...

 Skip connection
white-box / black-box

grad
Skip ST — 100% / 52.52%
connection
d
N Ay g TR S S 100% / 55.24%
Residual

module rad
TSP ¥ >— 100% / 62.10%

grad
£ X > 99.86%/47.70%

Skip connections expose more transferable information !

D. Wu, Y Wang, et.al, Skip Connections Matter: On the Transferability of Adversarial Examples Generated with ResNets. ICLR 2020.



Skip Gradient Method (SGM)
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Takehome Message

* For the min-max problem, the following aspects are
essential:

— how to make max solves better
— How to make min process easily

* Model architecture is also important for adversarial
research
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Building ML one can truly rely on
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